project:build.sh: Added fastboot support; custom modifications to U-Boot and kernel implemented using patches.

project:cfg:BoardConfig_IPC: Added fastboot BoardConfig file and firmware post-scripts, distinguishing between
the BoardConfigs for Luckfox Pico Pro and Luckfox Pico Max. project:app: Added fastboot_client and rk_smart_door
for quick boot applications; updated rkipc app to adapt to the latest media library. media:samples: Added more
usage examples. media:rockit: Fixed bugs; removed support for retrieving data frames from VPSS. media:isp:
Updated rkaiq library and related tools to support connection to RKISP_Tuner. sysdrv:Makefile: Added support for
compiling drv_ko on Luckfox Pico Ultra W using Ubuntu; added support for custom root filesystem.
sysdrv:tools:board: Updated Buildroot optional mirror sources, updated some software versions, and stored device
tree files and configuration files that undergo multiple modifications for U-Boot and kernel separately.
sysdrv:source:mcu: Used RISC-V MCU SDK with RT-Thread system, mainly for initializing camera AE during quick
boot. sysdrv:source:uboot: Added support for fastboot; added high baud rate DDR bin for serial firmware upgrades.
sysdrv:source:kernel: Upgraded to version 5.10.160; increased NPU frequency for RV1106G3; added support for
fastboot.

Signed-off-by: luckfox-eng29 <eng29@luckfox.com>
This commit is contained in:
luckfox-eng29
2024-08-21 10:05:47 +08:00
parent e79fd21975
commit 8f34c2760d
20902 changed files with 6567362 additions and 11248383 deletions

View File

@@ -11,13 +11,10 @@
static int adc_key_ofdata_to_platdata(struct udevice *dev)
{
struct dm_key_uclass_platdata *uc_key;
u32 chn[2], mV;
int vref, ret;
#ifdef CONFIG_SARADC_ROCKCHIP_V2
int range = 4096; /* 12-bit adc */
#else
int range = 1024; /* 10-bit adc */
#endif
int t, down_threshold = -1, up_threshold;
int ret, num = 0, volt_margin = 150000; /* will be div 2 */
u32 voltage, chn[2];
ofnode node;
uc_key = dev_get_uclass_platdata(dev);
if (!uc_key)
@@ -33,29 +30,50 @@ static int adc_key_ofdata_to_platdata(struct udevice *dev)
return -EINVAL;
}
vref = dev_read_u32_default(dev_get_parent(dev),
up_threshold = dev_read_u32_default(dev_get_parent(dev),
"keyup-threshold-microvolt", -ENODATA);
if (vref < 0) {
printf("%s: read 'keyup-threshold-microvolt' failed, ret=%d\n",
uc_key->name, vref);
return -EINVAL;
}
if (up_threshold < 0)
return -ENODATA;
uc_key->code = dev_read_u32_default(dev, "linux,code", -ENODATA);
if (uc_key->code < 0) {
printf("%s: read 'linux,code' failed\n", uc_key->name);
return -EINVAL;
if (uc_key->code < 0)
return -ENODATA;
voltage = dev_read_u32_default(dev, "press-threshold-microvolt", -ENODATA);
if (voltage < 0)
return -ENODATA;
dev_for_each_subnode(node, dev->parent) {
ret = ofnode_read_s32(node, "press-threshold-microvolt", &t);
if (ret)
return ret;
if (t > voltage && t < up_threshold)
up_threshold = t;
else if (t < voltage && t > down_threshold)
down_threshold = t;
num++;
}
mV = dev_read_u32_default(dev, "press-threshold-microvolt", -ENODATA);
if (mV < 0) {
printf("%s: read 'press-threshold-microvolt' failed\n",
uc_key->name);
return -EINVAL;
/* although one node only, it doesn't mean only one key on hardware */
if (num == 1) {
down_threshold = voltage - volt_margin;
up_threshold = voltage + volt_margin;
}
uc_key->in_volt = 1;
uc_key->channel = chn[1];
uc_key->adcval = mV / (vref / range);
uc_key->center = voltage;
/*
* Define the voltage range such that the button is only pressed
* when the voltage is closest to its own press-threshold-microvolt
*/
if (down_threshold < 0)
uc_key->min = 0;
else
uc_key->min = down_threshold + (voltage - down_threshold) / 2;
uc_key->max = voltage + (up_threshold - voltage) / 2;
return 0;
}

View File

@@ -6,6 +6,7 @@
#include <common.h>
#include <adc.h>
#include <div64.h>
#include <dm.h>
#include <irq-generic.h>
#include <key.h>
@@ -37,11 +38,42 @@ uint64_t key_timer(uint64_t base)
return (cntpct > base) ? (cntpct - base) : 0;
}
static int key_adc_event(struct dm_key_uclass_platdata *uc_key, int adcval)
#ifdef CONFIG_ADC
static int adc_raw_to_mV(struct udevice *dev, unsigned int raw, int *mV)
{
return (adcval <= uc_key->max && adcval >= uc_key->min) ?
unsigned int data_mask;
int ret, vref = 1800000;
u64 raw64 = raw;
ret = adc_data_mask(dev, &data_mask);
if (ret)
return ret;
raw64 *= vref;
do_div(raw64, data_mask);
*mV = raw64;
return 0;
}
static int key_adc_event(struct udevice *dev,
struct dm_key_uclass_platdata *uc_key, int adcval)
{
int val = adcval;
if (uc_key->in_volt) {
if (adc_raw_to_mV(dev, adcval, &val))
return KEY_PRESS_NONE;
}
debug("[%s] <%d, %d, %d>: adcval=%d -> mV=%d\n",
uc_key->name, uc_key->min, uc_key->center, uc_key->max,
adcval, val);
return (val <= uc_key->max && val >= uc_key->min) ?
KEY_PRESS_DOWN : KEY_PRESS_NONE;
}
#endif
static int key_gpio_event(struct dm_key_uclass_platdata *uc_key)
{
@@ -108,16 +140,36 @@ int key_is_pressed(int event)
static int key_core_read(struct dm_key_uclass_platdata *uc_key)
{
unsigned int adcval;
if (uc_key->type == ADC_KEY) {
if (adc_channel_single_shot("saradc",
uc_key->channel, &adcval)) {
KEY_ERR("%s failed to read saradc\n", uc_key->name);
#ifdef CONFIG_ADC
struct udevice *dev;
unsigned int adcval;
int ret;
ret = uclass_get_device_by_name(UCLASS_ADC, "saradc", &dev);
if (ret)
ret = uclass_get_device_by_name(UCLASS_ADC, "adc", &dev);
if (ret) {
KEY_ERR("%s: No saradc\n", uc_key->name);
return KEY_NOT_EXIST;
}
return key_adc_event(uc_key, adcval);
ret = adc_start_channel(dev, uc_key->channel);
if (ret) {
KEY_ERR("%s: Failed to start saradc\n", uc_key->name);
return KEY_NOT_EXIST;
}
ret = adc_channel_data(dev, uc_key->channel, &adcval);
if (ret) {
KEY_ERR("%s: Failed to read saradc, %d\n", uc_key->name, ret);
return KEY_NOT_EXIST;
}
return key_adc_event(dev, uc_key, adcval);
#else
return KEY_NOT_EXIST;
#endif
}
return (uc_key->code == KEY_POWER) ?
@@ -273,11 +325,7 @@ static int key_post_probe(struct udevice *dev)
{
struct dm_key_uclass_platdata *uc_key;
int ret;
#ifdef CONFIG_SARADC_ROCKCHIP_V2
int margin = 120;
#else
int margin = 30;
#endif
uc_key = dev_get_uclass_platdata(dev);
if (!uc_key)
return -ENXIO;
@@ -286,11 +334,7 @@ static int key_post_probe(struct udevice *dev)
uc_key->pre_reloc = dev_read_bool(dev, "u-boot,dm-pre-reloc") ||
dev_read_bool(dev, "u-boot,dm-spl");
if (uc_key->type == ADC_KEY) {
uc_key->max = uc_key->adcval + margin;
uc_key->min = uc_key->adcval > margin ?
uc_key->adcval - margin : 0;
} else {
if (uc_key->type != ADC_KEY) {
if (uc_key->code == KEY_POWER) {
#if CONFIG_IS_ENABLED(IRQ)
int irq;
@@ -337,8 +381,9 @@ static int key_post_probe(struct udevice *dev)
dev->parent->name);
if (uc_key->type == ADC_KEY) {
printf(" adcval: %d (%d, %d)\n", uc_key->adcval,
uc_key->min, uc_key->max);
printf(" %s: %d (%d, %d)\n",
uc_key->in_volt ? "volt" : " adc",
uc_key->center, uc_key->min, uc_key->max);
printf(" channel: %d\n\n", uc_key->channel);
} else {
const char *gpio_name =

View File

@@ -27,9 +27,13 @@ static int rk_key_ofdata_to_platdata(struct udevice *dev)
if (dev_read_bool(dev, "rockchip,adc_value")) {
uc_key->type = ADC_KEY;
uc_key->in_volt = 0;
uc_key->channel = chn[1];
uc_key->adcval =
dev_read_u32_default(dev, "rockchip,adc_value", 0);
uc_key->center = dev_read_u32_default(dev, "rockchip,adc_value", 0);
uc_key->min = uc_key->center - 30;
if (uc_key->min < 0)
uc_key->min = 0;
uc_key->max = uc_key->center + 30;
} else {
uc_key->type = GPIO_KEY;
if (dev_read_u32_array(dev, "gpios",

View File

@@ -6,28 +6,48 @@
#include <common.h>
#include <adc.h>
#include <div64.h>
#include <fdtdec.h>
#include <dm/uclass.h>
DECLARE_GLOBAL_DATA_PTR;
static int adc_raw_to_mV(struct udevice *dev, unsigned int raw, int *mV)
{
unsigned int data_mask;
int ret, vref = 1800000;
u64 raw64 = raw;
ret = adc_data_mask(dev, &data_mask);
if (ret)
return ret;
raw64 *= vref;
do_div(raw64, data_mask);
*mV = raw64;
return 0;
}
int key_read(int code)
{
const void *fdt_blob = gd->fdt_blob;
struct udevice *dev;
int adc_node, offset;
int cd, channel, adc;
int ret, vref, mv;
int t, down_threshold = -1, up_threshold;
int ret, num = 0, volt_margin = 150000; /* will be div 2 */
int mV, cd, voltage = -1;
int min, max;
int margin;
int range;
uint val;
u32 chn[2];
#ifdef CONFIG_SARADC_ROCKCHIP_V2
range = 4096; /* 12-bit adc */
margin = 120;
#else
range = 1024; /* 10-bit adc */
margin = 30;
#endif
u32 chn[2], adc;
ret = uclass_get_device_by_name(UCLASS_ADC, "saradc", &dev);
if (ret)
ret = uclass_get_device_by_name(UCLASS_ADC, "adc", &dev);
if (ret) {
debug("No saradc device, ret=%d\n", ret);
return 0;
}
adc_node = fdt_node_offset_by_compatible(fdt_blob, 0, "adc-keys");
if (adc_node < 0) {
debug("No 'adc-keys' node, ret=%d\n", adc_node);
@@ -41,40 +61,89 @@ int key_read(int code)
return 0;
}
vref = fdtdec_get_int(fdt_blob, adc_node,
"keyup-threshold-microvolt", -1);
if (vref < 0) {
up_threshold = fdtdec_get_int(fdt_blob, adc_node,
"keyup-threshold-microvolt", -ENODATA);
if (up_threshold < 0) {
debug("Can't read 'keyup-threshold-microvolt'\n");
return 0;
}
channel = chn[1];
/* find the expected key-code */
for (offset = fdt_first_subnode(fdt_blob, adc_node);
offset >= 0;
offset = fdt_next_subnode(fdt_blob, offset)) {
cd = fdtdec_get_int(fdt_blob, offset, "linux,code", -ENODATA);
if (cd < 0) {
debug("Can't read 'linux,code', ret=%d\n", cd);
return 0;
}
if (cd == code) {
voltage = fdtdec_get_int(fdt_blob, offset,
"press-threshold-microvolt", -ENODATA);
if (voltage < 0) {
debug("Can't read 'press-threshold-microvolt'\n");
return 0;
}
break;
}
}
if (voltage < 0)
return 0;
for (offset = fdt_first_subnode(fdt_blob, adc_node);
offset >= 0;
offset = fdt_next_subnode(fdt_blob, offset)) {
cd = fdtdec_get_int(fdt_blob, offset, "linux,code", -1);
if (cd == code) {
mv = fdtdec_get_int(fdt_blob, offset,
"press-threshold-microvolt", -1);
if (mv < 0) {
debug("Can't read 'press-threshold-microvolt'\n");
return 0;
}
adc = mv / (vref / range);
max = adc + margin;
min = adc > margin ? adc - margin : 0;
ret = adc_channel_single_shot("saradc", channel, &val);
if (ret) {
debug("Failed to read adc%d, ret=%d\n",
channel, ret);
return 0;
}
return (val >= min && val <= max);
t = fdtdec_get_int(fdt_blob, offset,
"press-threshold-microvolt", -ENODATA);
if (t < 0) {
debug("Can't read 'press-threshold-microvolt'\n");
return 0;
}
if (t > voltage && t < up_threshold)
up_threshold = t;
else if (t < voltage && t > down_threshold)
down_threshold = t;
num++;
}
return 0;
/* although one node only, it doesn't mean only one key on hardware */
if (num == 1) {
down_threshold = voltage - volt_margin;
up_threshold = voltage + volt_margin;
}
/*
* Define the voltage range such that the button is only pressed
* when the voltage is closest to its own press-threshold-microvolt
*/
if (down_threshold < 0)
min = 0;
else
min = down_threshold + (voltage - down_threshold) / 2;
max = voltage + (up_threshold - voltage) / 2;
/* now, read key status */
ret = adc_channel_single_shot("saradc", chn[1], &adc);
if (ret)
ret = adc_channel_single_shot("adc", chn[1], &adc);
if (ret) {
debug("Failed to read adc%d, ret=%d\n", chn[1], ret);
return 0;
}
ret = adc_raw_to_mV(dev, adc, &mV);
if (ret) {
debug("Failed to convert adc to mV, ret=%d\n", ret);
return 0;
}
debug("key[%d] <%d, %d, %d>: adc=%d -> mV=%d\n",
code, min, voltage, max, adc, mV);
return (mV <= max && mV >= min);
}